

LED Wall

An interactive LED matrix based on WS2812b LEDs

The Idea

A LED Matrix which can be used as a display to play games
or to show different information (like the current weather
conditions)

The Architecture

The main ingredients are:

	Raspberry PI (Version 2 or 3 will do)

	Arduino Uno (for wireless panels use a NodeMCU)

	LW2812b LED Stripes

Python

For easy color manipulation as well as different hardware setups.
I wrote a python library. To get started, read the documentation
of the Display class.

Contents

	Getting started
	The LEDs

	The micro controller

	Installing the python library

	Writing your first script
	The Hello World of LEDWall

	Python Library

Indices and tables

	Index

	Module Index

	Search Page

[image: WS2812B stripe]

Getting started

The LEDs

Ok, this is a library to manipulate leds. So, we definitly need leds.
The arduino sketch makes use of the fastled library. I only used WS2812B led
stripes, but any led type supported by the library should work. If
you’re using any other led, you may need to tweak the sketch to initialize
fastled correctly. For more details on fastled it is worth checking
out the website Fastled.io [http://fastled.io]. There you will also find
some useful information about timings and power consumtion.

[image: Controllers]

The micro controller

If you clone the github project, you will find two arduino/nodemcu
sketches. The correct sketch depends on the way you want to communicate
with the controller. A sketch counterparts a certain sender
class. Currently two sketches are available. One for
the UDPSender class and one for the
SerialSender class.

Here I will focus on the serial communication. The sketch you need
is the Framebuffer3.ino sketch.

#include <Arduino.h>
#include <FastLED.h>

#define DATA_PIN 5 // The Pin your LED data line is connected to
#define BAUDRATE 500000 // The communication speed
#define MAX_SERIAL_DELAY 3000 // Maximum delay between transmitted
 // data within one command in milliseconds
const uint8_t numberOfLeds = 100; // The number of leds

// ### DO NOT CHANGE ANYTHING BELOW THIS LINE UNLESS YOU KNOW WAHT YOU ARE DOING ###

#define BYTES_PER_PIXEL 3 // Don't chang this
#define CMD_PAINT_PANEL 243 // Don't chang this

#define NODEBUG

const int16_t numberOfByte = numberOfLeds * BYTES_PER_PIXEL;

Before uploading the script, some adjustments
have to be done to match your setup.

	DATA_PIN

	The pin on the micro controller, where the data
line of your leds is connected to. The default is pin 5.

	BAUDRATE

	The baudrate for the serial communication. The baudrate in
the sketch and the baudrate in the constructor of the
SerialSender have to be identical. Please read the documentation
of the pyserial [https://pypi.org/project/pyserial/] module,
as not all speeds are supported on every plattform. Some people
reported, that you have to change boot settings on the raspberry
before using higher speeds than 155,200 b/s. On my raspberry 3 the
default speed of 0,5 Mb/s worked perfectly. Keep in mind, that
also the quality and the length of the usb cable will have an impact.

	numberOfLeds

	The variable numberOfLeds holds (surprise, surprise) the number
of LEDs on your panel.

Warning

Make shure you don’t use more leds in your python
Display instance. Also make
shure that your physical board doesn’t have less leds.

Installing the python library

The library is hosted on PyPi [https://pypi.org/project/ledwall/]. You can
easily install it using pip. The library only suppports python3. The following
shell session shows the process to install the library. The procedure shown
below works on ubuntu and raspberry. I’ve never tested this on windows. But
installing on windows should be pretty straight forward.

$ mkdir tmp
$ cd tmp
$ python3 -m venv .
$. bin/activate
(tmp) $ pip install ledwall

The library has the following dependencies:

	pyserial [https://pypi.org/project/pyserial/]

	paho-mqtt [https://pypi.org/project/paho-mqtt/]

	inputs [https://pypi.org/project/inputs/]

The Display class offers some
functions that depend on the
python image library PIL [https://pypi.org/project/PIL/].
PIL is not supported on python3. Therefore PIL is not listed
in the dependencies and will not be installed automatically.
You can instead install
the pillow [https://pypi.org/project/Pillow/] library if you
want to use these functions. Maybe this will change in the
future.

[image: LED Panel]

Writing your first script

You can fire up the python3 REPL console or use your favorite editor or ide.

Tip

The library supports only python 3. Scripts will
not run with python 2.

The Hello World of LEDWall

import ledwall.components as comp

s = comp.SerialSender() # Creating a serial sender with the
 # default port_name and baudrate
d = comp.Display(16,32,s) # Defining a new display component

red = comp.Color(255,0,0) # Defining an RGB color
col = comp.HSVColor(0.7,0.8,1.0) # Defining an HSVColor

d.fill((0,255,0)) # Fill the panel with green. You can specify
 # rgb colors as tuple as you go
d.set_pixel(0,3,red) # which is equivalent to:
 # d[(0,3)] = red or d[(0,3)] = (255,0,0)
d.set_pixel(14,23,col) # Setting the pixel to the defined
 # hsv color. Comversion to rgb is calculated
 # on the fly

col.hue += 0.13 # Changing the HUE component of the color
d.set_pixel(15,23,col) # Setting the pixel in this color

d.update() # Updating the physical component

Python Library

The python library provides modules and classes to manipulate the pixel colors
on the LED Display. I tried to design a pythonic API, which makes it very
intuitive to paint to the LED Display.

A very simple python script would look like this:

from ledwall.components import *

Create a new display instance. Using a SerialSender to
send the color data to the arduino.
Setting the desired framerate is 15
d = Display(16,32, SerialSender(portName='/dev/ttyACM0', baudrate=1000000), framerate=15)

Defining a few basic colors
red = RGBColor.fromIntValues(255,0,0)
green = RGBColor.fromIntValues(0,255,0)

d.fill(green)
d.setPixel(0,3,red)
d.setPixel(14,23,red)

d.update()

ledwall.components

The components module is the home for the Display class, which is the main
class of this library. A display is a in memory representation of the color
state of every led. It supports different cabeling schemes for your hardware
component and many convenient method to control the pixels of the display.

Also this modules offers color classes for the RGB and the HSV color space.

WireMode

Display

Color Classes

For a LED project color manipulation is of course the most important
part. The WS2812b needs for every pixel the RGB values, where every
component is represented as byte [0;255]. From a artistic point of
view the HSV color space is much more intuitive. Therefore this library
provides convenience classes to create, manipulate and convert classes
in RGB (RGBColor) and HSV
(HSVColor) color space.

For more information about the HSV color space, checkout the wikipedia page [https://en.wikipedia.org/wiki/HSL_and_HSV].

Gamma Correction

The library uses the following table for gamma correction. Each channel
value from an RGB color is map to the corresponding corrected color.
This table is especially made for the WS2812b leds. To convert a byte
u can use the static method gammaCorrection().

gamma8_table = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
 90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114,
 115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142,
 144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175,
 177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213,
 215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255]

Color

HSVColor

RGBColor

Sender

SerialSender

MqttSender

UDPSender

ConsoleSender

This class was used during development. It is
documented for the sake of completeness. There
is no real use case. So, save time and stop reading.

RegionSender

ledwall.geometry

The geometry module includes some basic shapes that
can be drawn to the display. The basic shapes are
Point, Line,
Rectangle.

Some sample code:

from ledwall.geometry import *

p1 = Point(2,4)
p2 = Point(7,12)

Line between two points
l1 = Line(p1,p2)

Line from values (x1,y1,x2,y2)
l1 = Line.fromTuple((0,0,5,10))

r1 = Rectangle(2,3,10,20)

Point

Rectangle

Line

Index

Arduino Mqtt

Sketch to receive commands from an mqtt broker. The different commands
are coded by defined bytes in the payload of the mqtt message. The sketch
uses the pubsub library.

Init Panel

Initializes the “panel”
If the provided frame number is smaller than the curent frame number,
the operation will be canceled.
If the memory for the leds already has been allocated, the operation
will be canceled. If the first byte ist not CMD_SHOW, the operation
will be canceled.

Byte Position

	Index

	Description

	0

	Command Byte. must be CMD_SHOW

	1

	width of the panel. The number of leds per row.

	2

	height of the panel. The number of rows.

	3

	HIGH byte of the initial frame nr. .

	4

	LOW byte of the initial frame nr.

	param cmdbuffer

	Pointer the the byte buffer with the command bytes.

	type cmdbuffer

	byte*

void initPanel(byte* cmdbuffer, uint16_t length)

Show Panel

Updates the LEDs.

If the provided frame number is smaller than the curent frame number,
the operation will be canceled. If length is not 3, operation will be canceled.

Byte Position

	Index

	Description

	0

	Command Byte. must be CMD_SHOW

	1

	HIGH byte frame nr to be updated.

	2

	LOW byte frame nr to be updated.

void showPanel(byte* cmdbuffer, uint16_t length)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/led_controller_800_133.jpg

_images/led_makefair_800_133.jpg

_images/led_strip_800_333.jpg

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 LED Wall

 		
 Getting started

 		
 The LEDs

 		
 The micro controller

 		
 Installing the python library

 		
 Writing your first script

 		
 The Hello World of LEDWall

 		
 Python Library

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

